

Ver 1.00

SN74LS75N

Product Introduction

The SN74LS75N is ideally suited for use as temporary storage for binary information between processing units and input / output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low,the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high. This device features complementary Q and Q outputs from a 4-bit latch.

Product Features

- Integrated four sets of D trigger with high level control trigger
- Fully compatible with TTL input and output logic level
- Input Clamp Diodes Limit High Speed Termination Effects
- Package : DIP16, SOP16

Product Applications

- Signal decoding processing
- Industrial control applications
- Other application areasBattery-powered equipment

Package and Pin Assignment

SOP16 or DIP16							
Pin NO	Pin Definition	Pin NO	Pin Definition				
1	Output 1Q	16	Output 1Q				
2	Input 1D	15	Output 2Q				
3	Input 2D	14	Output 2Q				
4	Input 3G/4G	13	Input 1G/2G				
5	Supply VCC	12	Supply GND				
6	Input 3D	11	Output 3Q				
7	Input 4D	10	Output 3Q				
8	Output 4Q	9	Output 4Q				

Ver 1.00

Absolute Maximum Ratings

ltem	Symbol	Maximum Ratings	Unit
Supply voltage	V _{cc}	7	V
Input voltage	VI	7	V
Power dissipation	PD	500	mW
Operating temperature	T _A	0-70	°C
Storage temperature	Ts	-65-150	°C
welding temperature	Tw	260	°C,10s

Note: the limit parameter is the limit value that cannot be exceeded under any condition. Once this limit is exceeded, it may cause physical damage such as deterioration of the product. At the same time, the chip can not be guaranteed to work properly when it is close to the limit parameters.

Block Diagram

Function Table

Inp	outs	Outputs			
D	DG		Q		
L	Н	L	Н		
Н	Н	Н	L		
×	L	Qo	Qo		

H; high level, L; low level, X; irrelevant

Q₀; level of Q before the indicated steady-state input conditions were established.

Qo; complement of Qo or level of Qo before the indicated steady-state input conditions were established.

Recommended Operating Conditions

ltem	Symbol	Min	Тру	Max	Unit
Supply voltage	V _{CC}	4.75	5.00	5.25	V
	I _{OH}	—	—	-400	uA
Output current	I _{OL}	_	_	8	mA
Operating temperature	TA	0	_	60	°C
Pulse width	tw	20	_	_	ns
Setup time	t _{su}	15	_	_	ns
Hold time	th	5	—	—	ns

Ver 1.00

lter	n	Symbol	Min	Тру	Мах	Unit	Conditions		
Input voltage		VIH	2		—	V			
		VIL	_		0.7	V			
Output voltage		V _{он}	2.7	3.3		V	$V_{CC} = 4.75V, V_{IH} = 2V, V_{IL} = 0.7V,$ $I_{OH} = -400 \text{ uA}$		
		V		0.3	0.5	V	$I_{OL} = 8 \text{ mA}$	$V_{CC} = 4.75V, V_{IL} = 0.7V,$	
		VOL	_	0.2	0.4	V	$I_{OL} = 4 \text{ mA}$	$V_{IH} = 2V$	
D G	т	_		20		$V = E \Omega E V = 0.7 V$			
	G	⊥IH	_		80	UA	$v_{CC} = 0.20v, v_{I} = 2.7v$		
Input	D	т		0.25	0.4	mΛ	V	$-5.95V$ $V_{-} - 0.4V$	
current	G	ΤIΓ		0.65	1.6	IIIA	V CC	-5.25V, VI -0.4 V	
	D	Т.,			-0.1	mΛ	V -		
G		ΤI			-0.4	IIIA	VCC = 0.20V, VI = 7V		
Short-circuit output current*		I _{os}		-40	-100	mA	$V_{CC} = 5.25V$		
Supply current		Icc		5.8	12	mA	$V_{CC} = 5.25V$, all inputs grounded.		
Input clamp	o voltage	VIR		-0.9	-1.5	V	V _{CC} =4.75 V, I _{IN} = -18 mA		

Electrical Characteristics

 $(T_A=25^{\circ}C, Unless specified)$

Note1: *only one output port is short circuited each time, and the short circuit time is not more than one second.

Switching Characteristics (T_A=25°C, Unless specified)

ltem	Symbol	Inputs	Outputs	Min	Тру	Max	Unit	Conditions
Propagation delay time	t _{PHL}	D	Q	_	8		ns	RL=2k CL=15pF
	t _{PLH}			_	14		ns	
	t _{PHL}	D	Q	_	21		ns	
	t _{PLH}				16		ns	
	t _{PHL}	G	Q		22		ns	
	t _{PLH}			_	33		ns	
	t _{PHL}	G	Q	_	38		ns	
	t _{PLH}				31		ns	

Testing Method

 $1 \land t_{PLH, tPHL}$ ($D \land G \rightarrow Q, Q$)

Notes:

- 1. Only one trigger is tested at a time.
- 2. the CL capacitor is an external patch capacitor (0603), which is connected to the output pin and the capacitor is near the chip GND.
- 3. All diode models are 1S2074 (H).

2 Vaveform

Notes: D input PRR=500KHz; G input PRR=1MHz; $t_{TLH}=t_{THL} \leq 20$ ns

Package Dimensions

Unit : mm /inch

DIP16

SOP16

